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We propose a discretization method of a five-equation model with isobaric closure for the
simulation of interfaces between compressible fluids. This numerical solver is a Lagrange–
Remap scheme that aims at controlling the numerical diffusion of the interface between both
fluids. This method does not involve any interface reconstruction procedure. The solver is
equipped with built-in stability and consistency properties and is conservative with respect
to mass, momentum, total energy and partial masses. This numerical scheme works with a
very broad range of equations of state, including tabulated laws. Properties that ensure a
good treatment of the Riemann invariants across the interface are proven. As a consequence,
the numerical method does not create spurious pressure oscillations at the interface. We
show one-dimensional and two-dimensional classic numerical tests. The results are com-
pared with the approximate solutions obtained with the classic upwind Lagrange–Remap
approach, and with experimental and previously published results of a reference test case.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We consider the simulation of flows with interfaces separating two compressible fluids. A first classic approach consists in
modelling the flow of each fluid by the compressible Euler equations in each fluid domain and then coupling both systems
across the interface thanks to jump relations. This coupling formulation can be replaced by an alternate single problem defined
over the whole computational domain by introducing an additional parameter generally called a ‘‘color function”. The color
function can be a physically relevant parameter, e.g. a mass fraction of a volume fraction, or an abstract parameter that takes
the value 0 (resp. 1) in fluid 0 (resp. 1). The system can thus be viewed as the flow of a single equivalent fluid whose state law is
defined according to the value of the color function. In this case, the material interface is located by the discontinuity locus of
the color function. This framework has been used extensively for the past years and has contributed to popularize interface
capture methods. The ground of interface capture methods consists in solving an evolution PDE for the color function without
any interface reconstruction process. This usually creates a numerical transition zone for the color function that requires to
introduce a mixture model. Indeed, for compressible fluids, although we suppose both fluids to be equipped with their own
Equation of State (EOS), no EOS is given a priori for the region where the interface becomes numerically smeared.

Among the numerous works that have addressed this issue, we choose here to focus on the five-equation system pro-
posed in [2,3] that provides a convenient model for the EOS in the numerical transition zone. Let us mention that other
five-equation systems have been studied by [20,21,24] for the case of more complex interface problems that account for
physical mixing zones. These works usually propose a discretization based on an approximate Riemann solver. Unfortunately
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the numerical diffusion generated by the solvers tends to extend the smeared zone that captures the interface. As a conse-
quence, for simulations that require a relatively large amount of time steps the interface shape may no longer be distinguish-
able. A possible cure for this drawback is to consider interface capture methods such as the well-known level set methods
[47,30,31,9,46,45] which intrinsically do not smear the interface. Instead of capturing the profile of a discontinuous color
function, level set methods propose to define the interface as the zero-level set of a function that approximates the signed
distance to the interface in a neighborhood of the latter. The implementation of a level set method consists then in following
the evolution of a continuous level set function thanks to a PDE instead of a discontinuous color function. However, the level
set methods do not ensure the resulting algorithm to be conservative in the general case. Moreover, it requires the use of
additional treatments in order to reinitialize the level set function during the computation. Both of these issues have been
widely examined by numerous works. Let us mention for example [48,42,50,51,39] for conservativity issues and the work of
[22,30,23,54,36,52] for reinitialization techniques.

An alternate approach to cope with the numerical smearing of the interfaces has been considered by [8]. The core of the
method relies on a stability analysis initially developed for the simple case of the linear advection equation [6,19]. An exten-
sion to the capture of an interface for a specific compressible multimaterial flow model was then derived in [8] by means of a
Lagrange–Remap strategy. Let us also mention the work [38] that used the linear advection scheme of [6,19] for simulating a
specific system dedicated to flows with interfaces in the low-Mach regime.

Following the way paved by [19,7,8] the present paper proposes a Lagrange–Remap solver for the five-equation model of
[2,3] that complies with the following constraint: the solver should be conservative with respect to partial masses, momen-
tum, mass and total energy. Moreover one can show that for a wide range of flow configurations the solver will provide for
both mass fraction and color function stability properties that are comparable to those of the classic upwind solver. The sol-
ver also provides a good treatment of the Riemann invariants across the material front in a similar way to the solver pro-
posed in [2,3]. Let us also emphasize that our scheme does not require any additional CPU cost compared to a classic
upwind Lagrange–Remap method.

The overall construction principle of our numerical scheme has been presented in [43] along with a few preliminary sim-
ulations. We intend to provide here a thorough presentation of this numerical scheme and its properties along with detailed
numerical results. The paper is organized as follows: in the first section we recall the five-equation model with isobaric clo-
sure of [2,3] and its main properties, then in Section 3.1.2 we recall the general structure of a Lagrange–Remap solver. In
Section 3.1.4 we show that, following our lines, the design of the whole solver boils down to properly define a numerical
flux for the color function. This matter is examined in Section 3.2 where we provide stability and consistency constraints
for the numerical flux associated with the color function and show that all of these constraints are compatible with each
other. In Section 3.4 we present the full algorithm. We examine in Section 4 the effect of our scheme on the Riemann invari-
ants across the material interface. Finally, we present in Section 5 a series of one-dimensional and two-dimensional numer-
ical tests that show the good behavior of the scheme regarding the numerical diffusion of the interface.

2. The five-equation system with isobaric closure

We briefly recall in this section the system we are concerned with and its main properties. The notations we shall use
here slightly differ from the original notations of [2,3].

We note qk; ek and Pk, respectively, the density, the specific internal energy and the pressure of fluid k ¼ 0;1. We suppose
each fluid k ¼ 0;1 to be equipped with an equation of state (EOS) of the form qkek : ðqk; PkÞ#qkek. The position of the inter-
face is located thanks to a color function ðx; tÞ#z that takes the value 1 (resp. 0) when the point x belongs to a pure fluid 1
(resp. 0) region at instant t.

The density q and specific energy e of the two-fluid medium are given by
q ¼ zq1 þ ð1� zÞq0; qe ¼ zq1e1 þ ð1� zÞq0e0:
We define the mass fraction yk of the fluid k ¼ 0;1 by setting
y ¼ zq1=q; y1 ¼ y; y0 ¼ 1� y:
Both fluids are supposed to have the same velocity u and we note e ¼ eþ juj2=2 the specific total energy of the two-fluid
medium. For k ¼ 0;1 let us also note nk ¼ qkð@ek=@PkÞqk

and ck the sound velocity of pure fluid k assumed to be real valued.
The five-equation system with isobaric closure reads
@qy
@t
þ divðqyuÞ ¼ 0;

@q
@t
þ divðquÞ ¼ 0;

@qu
@t
þ divðqu� uÞ þ grad P ¼ 0;

@qe
@t
þ div½ðqeþ PÞu� ¼ 0;

@z
@t
þ u � grad z ¼ 0;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð1Þ
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where the pressure law P : ðq0ð1� zÞ;q1z;qe; zÞ#P is defined as the solution of the system
P ¼ P1ðq1;q1e1Þ ¼ P0ðq0;q0e0Þ;
qe ¼ zq1e1 þ ð1� zÞq0e0

�
ð2Þ
for given values of q0;q1; z and e. System (2) provides a consistent definition of P for a very wide class of fluids. Indeed, one
can state that if the EOS of each pure fluid k ¼ 0;1 verifies
nk > 0; Pk P 0; ðqk;qkekÞ#Pk is a C1 function such that Pkðqk;qkek ¼ 0Þ ¼ 0;
then (2) has a unique solution (see [2,3]). Moreover, for a wide range of fluids such as Mie-Grüneisen materials, van der
Waals fluids, stiffened gases or perfect gases, system (2) admits a unique solution P that can be expressed explicitly by means
of the variables q0;q1; z and e. Let us note that solving (2) also enables to retrieve the phasic energies qkek thanks to the pure
fluid EOSs by setting qkek ¼ qkekðqk; PÞ, where P is the solution of (2), for k ¼ 0;1.

Remark 1. When z ¼ 0 (resp. z ¼ 1), the closure law defined by (2) may be ambiguous as q1 (resp. q0) becomes an arbitrary
parameter. In this case, we use a threshold value g > 0 as follows: when z < g (resp. 1� g < z) we set P ¼ P0ðq;qeÞ (resp.
P ¼ P1ðq;qeÞ). When g < z < 1� g we retrieve P by solving (2). In practice we use g ¼ 10�5, but we did not experience a
significant sensitivity of the simulation results when choosing smaller values for g. Let us also note that for stiffened gases or
perfect gases, the explicit definition of P degenerates naturally when z tends to 0 (resp. 1), therefore in these cases no
threshold is needed.

Let us now briefly recall the eigenstructure of the five-equation system with isobaric closure. For one-dimensional prob-
lems, smooth solutions of system (1) verify the following quasi-linear system:
@t
qV
z

� �
þ AðqV; zÞ@x

qV
z

� �
¼ 0; qV ¼ ðqy;q;qu;qeÞT : ð3Þ
We now recall the main well-posedness property of system (3).

Proposition 2.1. Suppose that n1 > 0 and n2 > 0, then the matrix AðqV; zÞ possesses 5 real eigenvalues fu� c;u;u;u;uþ cg,
where the sound velocity c of system (3) verifies
n ¼ zn1 þ ð1� zÞn0; qnc2 ¼ zq1n1c2
1 þ ð1� zÞq0n0c2

0:
Moreover the matrix AðqV; zÞ also possesses a set of eigenvectors that spans R5. Therefore system (3) is hyperbolic. The fields asso-
ciated with the eigenvalues u� c are genuinely non-linear and the fields associated with the multiple eigenvalue u are linearly
degenerate.

Remark 2. System (1) can be expressed in an equivalent fully conservative form using the variables ðqy;q;qu;qe;qzÞT .
Indeed, the variable z is only allowed to experience a jump across the material interface which is associated with the linearly
degenerate field. This ensures that the non-conservative product u � grad z is unambiguously defined and that the advection
equation for z in system (1) can be replaced by the conservation equation: @tðqzÞ þ divðqzuÞ ¼ 0.

Remark 3. The initial data for the type of problems we are concerned with do not contain 0 < z < 1 values. Thus, as the var-
iable z is passively advected by the flow through the contact discontinuity associated with u, the exact solution of system (1)
will not produce any value 0 < z < 1 for t > 0. However, the discrete approximation will develop a numerical mixture zone
for the discretized variable z, which is a priori not physically relevant in this case. This mixture zone shall converge to the
zero-thickness locus of discontinuity of the variable z as the discretization space step tends to zero.

In the sequel we shall always suppose the EOS of both fluids to match hypotheses that guarantee hyperbolicity for system
(3) and that provide a consistent definition of the pressure P. More specifically we shall assume that for any given values of
q0 > 0;q1 > 0;0 < z < 1 and e > 0, there is a unique pressure P verifying the isobaric closure (2) and unique phasic energies
values q1e1 and q0e0 such that qe ¼ zq1e1 þ ð1� zÞq0e0.

3. Numerical scheme

We first present a general structure for the algorithm by briefly recalling the Lagrange–Remap process for the special case
of the five-equation system with isobaric closure. While the Lagrange step is standard, we shall detail how to build a con-
venient Remap step that ensures two types of features. First, it provides some consistency and stability properties for the
scheme. Second, it allows to minimize the diffusion of the variables which are used to locate the interface.

3.1. General quasi-conservative Lagrange-Remap form for the one-dimensional five-equation system

3.1.1. Five-equation system in Lagrangian coordinates
Let us first recall the expression of system (3) in Lagrangian coordinates. If we note Dt� ¼ @t � þu@x� the material derivative,

then considering smooth solutions the system (3) also reads



Fig. 1. Multi-step structure of the Lagrange–Remap numerical scheme.
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qDty ¼ 0;
qDts� @xu ¼ 0;
qDtuþ @xP ¼ 0;
qDteþ @xðPuÞ ¼ 0;
qDtz ¼ 0;

ð4Þ
where s ¼ 1=q. The Lagrangian coordinates system ðX; tÞ attached to the initial instant t ¼ 0 is defined by
X ¼ v�1ðx; tÞ;
@
@t vðX; tÞ ¼ uðvðX; tÞ; tÞ;
vðX; t ¼ 0Þ ¼ X;

�
ð5Þ
which states that x ¼ vðX; tÞ is the position at time t of the particle that was at the coordinates X at instant t ¼ 0. Equivalently
we can say that X ¼ v�1ðx; tÞ is the initial position at t ¼ 0 of the particle that is located at the position x at the instant t. If one
considers any Eulerian field q : ðx; tÞ#q, then we can define a Lagrangian field qLag : ðX; TÞ#qLagðX; tÞ by setting
qLagðX; tÞ ¼ qðvðX; tÞ; tÞ and also qLag

0 ðXÞ ¼ q Lag
0 ðX; t ¼ 0Þ ¼ qðvðX; t ¼ 0Þ; t ¼ 0Þ. Using these notation system (4) is thus equiv-

alent to
qLag
0 @tyLag ¼ 0;

qLag
0 @tsLag � @XuLag ¼ 0;

qLag
0 @tuLag þ @XPLag ¼ 0;

qLag
0 @teLag þ @XðPLaguLagÞ ¼ 0;

qLag
0 @tzLag ¼ 0:

ð6Þ
3.1.2. The Lagrange–Remap solver
We now recall the Lagrange–Remap procedure. For a detailed presentation of this algorithm the reader can refer to [11].

Let us introduce some classic notations: let q : ðx; tÞ#qðx; tÞ be any Eulerian field, we denote by qn
j an approximate value of
1
Dx

Z xjþ1=2

xj�1=2

qðx; tnÞdx; j 2 Z; n 2 N;
where Dx is the space step and xj ¼ jDx; xjþ1=2 ¼ ðjþ 1=2ÞDx. The real interval ½xj�1=2; xjþ1=2� will be referred to as cell j, or cell
centered in xj. We shall note ðqn

j Þj2Z ¼ ðqnÞ.
We consider a single time step from the instant tn to the instant tnþ1. Let ðqnVn; znÞ be the discretized state variable at time

tn. The Lagrange–Remap solver consists in performing the three following steps (see Fig. 1).

Step 1. Consider a Lagrangian coordinates system attached to the instant t ¼ tn. Build the discretized Lagrangian variable
ðqLagVLag; zLagÞ ¼ ðqnVn; znÞ associated with the discrete Eulerian variableðqnVn; znÞ.

Step 2. Update the Lagrangian variable ðqLagVLag; zLagÞ to the its state ð~qeV;~zÞ at instant t ¼ tnþ1 by solving numerically
system (6).

Step 3. Remap the Lagrangian variable ð~qeV;~zÞ onto the Eulerian mesh which provides the discretized Eulerian variable
ðqnþ1Vnþ1; znþ1Þ at time t ¼ tnþ1, by solving numerically system (5). This step accounts for the fact that the mesh asso-
ciated with the Lagrangian system is deformed by (5) through the resolution of (6) from tn to tnþ1.
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As it will be shown in Section 3.4, a simple equation substitution allows to see that the overall algorithm can be put in
conservative form for the variables q;qy, qu and qe.

For the sake of readability, we shall use the following notations: for j 2 Z and n 2 N, we note

� qn
j is an approximate value of the field q in the Eulerian frame within the cell j at instant tn,

� qjþ1=2 is an approximate value of the field q in the Eulerian frame at the interface jþ 1=2 that separates the cell j and the
cell jþ 1 at instant tn,

� ~qj is an approximate value of the field q in the Lagrangian frame within the cell j at instant tnþ1,
� ~qjþ1=2 is an approximate value of the field q in the Lagrangian frame at the interface jþ 1=2 that separates the cell j and the

cell jþ 1 at instant tnþ1.

3.1.3. Lagrange step
The step 2 is a simple discretization of (6). Following [8] we use here the so-called ‘‘acoustic scheme” [5] that reads
~yj ¼ yn
j ;

~zj ¼ zn
j ;

qn
j

~sj � sn
j

Dt
� 1

Dx
ðujþ1=2 � uj�1=2Þ ¼ 0;

qn
j

~uj � un
j

Dt
þ 1

Dx
ðPjþ1=2 � Pj�1=2Þ ¼ 0;

qn
j

~ej � en
j

Dt
þ 1

Dx
ðPjþ1=2ujþ1=2 � Pj�1=2uj�1=2Þ ¼ 0;

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð7Þ
where the numerical fluxes are defined by
ujþ1=2 ¼ 1
2 ðun

jþ1 þ un
j Þ � 1

2ðqcÞjþ1=2
ðPn

jþ1 � Pn
j Þ;

Pjþ1=2 ¼ 1
2 ðP

n
jþ1 þ Pn

j Þ �
ðqcÞjþ1=2

2 ðun
jþ1 � un

j Þ;

ðqcÞjþ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max qn

jþ1ðcn
jþ1Þ

2
;qjðcn

j Þ
2

h i
minðqn

jþ1;qn
j Þ

r
:

8>>>><>>>>: ð8Þ
The time step Dt is chosen in agreement with the following Courant-Friedrichs-Lewy (CFL) condition:
Dt
Dx

max
j2Z

jujþ1=2j; ðqcÞjþ1=2=min qn
j ;q

n
jþ1

� �� �
6 CCFL ð9Þ
with CCFL usually chosen CCFL
6 0:8. The stability of the Lagrange step (7) under the condition (9) has been investigated in [5].

3.1.4. Remap step
Let us now turn to the step 3. The procedure of remapping the Lagrangian variable onto the Eulerian mesh consists in a

discrete resolution of system (5). Following classic lines (see [11]) we choose for this step a discretization of the form
qnþ1
j � qn

j

Dt
þ 1

Dx
ð~qjþ1=2ujþ1=2 � ~qj�1=2uj�1=2Þ ¼ 0;

qnþ1
j ynþ1

j � qn
j
~yj

Dt
þ 1

Dx
ð~qjþ1=2~yjþ1=2ujþ1=2 � ~qj�1=2~yj�1=2uj�1=2Þ ¼ 0;

qnþ1
j unþ1

j � qn
j
~uj

Dt
þ 1

Dx
ð~qjþ1=2~ujþ1=2ujþ1=2 � ~qj�1=2~uj�1=2uj�1=2Þ ¼ 0;

qnþ1
j enþ1

j � qn
j
~ej

Dt
þ 1

Dx
ð~qjþ1=2~ejþ1=2ujþ1=2 � ~qj�1=2~ej�1=2uj�1=2Þ ¼ 0;

znþ1
j � zn

j

Dt
þ 1

Dx
ð~zjþ1=2ujþ1=2 � ~zj�1=2uj�1=2Þ �

1
Dx

zn
j ðujþ1=2 � uj�1=2Þ ¼ 0:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð10Þ
The update (10) from ð~qeV;~zÞ to ðqnþ1Vnþ1; znþ1Þ is consistent with an advection step. Let us emphasize that (10) clearly shows
a conservative discretization for the variables qV and a non-conservative discretization for z. Once again, the time step Dt is
chosen according to the CFL condition (9), which ensures stability.

Given the Lagrange step described in Section 3.1.3 and given the framework (10) we only need to specify the numerical
flux ð~qeV;~zÞjþ1=2 in order to obtain a totally defined Remap Step and therefore a totally defined Lagrange–Remap scheme. Con-
sequently, building the numerical scheme boils down to define
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~yjþ1=2; ~qjþ1=2; ~ujþ1=2; gðqeÞjþ1=2; ~zjþ1=2: ð11Þ
We propose to choose the quantities in (11) as follows: first, we enforce the flux consistency for y;q and e by setting
~yjþ1=2 ¼
~zjþ1=2

fðq1Þ jþ1=2
~qjþ1=2

;

~qjþ1=2 ¼ ~zjþ1=2
gðq1Þjþ1=2 þ ð1� ~zjþ1=2Þ gðq0Þjþ1=2;

~qjþ1=2~ejþ1=2 ¼ ~zjþ1=2
gðq1e1Þjþ1=2 þ ð1� ~zjþ1=2Þ gðq0e0Þjþ1=2:

ð12Þ
The definition of the terms in (11) now boils down to choose the following fluxes:
gðq0Þjþ1=2; gðq1Þjþ1=2; gðq0e0Þjþ1=2; gðq1e1Þjþ1=2; ~ujþ1=2; ~zjþ1=2:
For gðqkÞjþ1=2; gðqkekÞjþ1=2 and ~ujþ1=2 we choose the upwind value according to the sign of the interface velocity ujþ1=2, namely
ðfq0 ;fq1 ; gq0e0 ; gq1e1 ; ~uÞjþ1=2 ¼
ðfq0 ;fq1 ; gq0e0 ; gq1e1 ; ~uÞj; if ujþ1=2 > 0;

ðfq0 ;fq1 ; gq0e0 ; gq1e1 ; ~uÞjþ1; if ujþ1=2 < 0:

(
ð13Þ
Finally, given the choices (13) and (12) the sole remaining problem consists in choosing the value of ~zjþ1=2. When we settle on
this point, the construction of the numerical scheme will be completed. This task is the purpose of the next Sections 3.3.1,
3.3.2, 3.3.3, 3.3.4 and 3.2.

3.2. Choice of the flux ~zjþ1=2 and control of the numerical diffusion of the interface

For the sake of clarity we anticipate the results of the Section 3.3 and we propose in the present section some general
guidelines inspired from the limited downwind strategy of [6,19,8]. These guidelines will allow us to choose ~zjþ1=2 so that
the material interface remains sharp throughout the computation.

Let us suppose that we know a sequence of real intervals ðIjþ1=2Þj2Z that shall be referred to as ‘‘trust intervals” in the se-
quel. These intervals are such that, for a given j 2 Z, if the flow variable ðqV; zÞn matches a certain flow configuration Cjþ1=2 in
the neighboring cells of the interface jþ 1=2 then ~zjþ1=2 2 Ijþ1=2 implies that the scheme fulfills numerical features such as
consistency and stability in some sense. Then we propose to choose ~zjþ1=2 according to the following strategy:

(a) If the flow ðqV; zÞn does not match the flow configuration Cjþ1=2 in a neighborhood of the interface jþ 1=2, then we
choose ~zjþ1=2 as the upwind value of zn ¼ ~z according to the sign of ujþ1=2.

(b) If the flow ðqV; zÞn does match the flow configuration Cjþ1=2 in a neighborhood of the interface jþ 1=2, then we choose
~zjþ1=2 such that it belongs to Ijþ1=2 and such that ~zjþ1=2 is as close as possible to the downwind value of ~z ¼ zn according
to the sign of ujþ1=2.

This strategy means that when the trust interval Ijþ1=2 provides stability and consistency, we choose for ~zjþ1=2 ‘‘the most
downwind” possible value within Ijþ1=2, when Ijþ1=2 does not give any information about the choice of ~zjþ1=2 we choose the
upwind value as a ‘‘safety measure”.

In the sequel we shall see that the flow configurations Cjþ1=2 we shall take into account simply relate to the sign of
ujþ1=2;uj�1=2 and ujþ3=2. Moreover, the next sections will allow us to build a trust interval Ijþ1=2 that provides

� consistency for the flux ~zjþ1=2 (see Section 3.3.1),
� consistency for the flux ~yjþ1=2 (see Section 3.3.2),
� stability for variable z (see Section 3.3.3),
� stability for variable y (see Section 3.3.4).

Thanks to this list of features, although ~zjþ1=2 is chosen downwind or as close as possible to the downwind value, our
scheme is endowed with good stability and consistency properties. This downwind choice constrained by stability and con-
sistency will prevent the interface from being smeared by the numerical scheme as in [6,19,7,8].

Remark 4. For the special case of the one-dimensional scalar advection equation with constant velocity, it has been proven
that the limited downwind strategy is equivalent to the Ultra-Bee limiter in the formalism developed by Sweby [55] or the
Hyper-C scheme in the Normalized Variable Diagram of Leonard [44].

Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4 are dedicated to the detailed derivation of the trust intervals Ijþ1=2 and the resulting
overall algorithm is described in Section 3.4.

3.3. Trust interval for ~zjþ1=2

Before going any further we introduce the following notations:
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mjþ1=2 ¼min zn
j ; z

n
jþ1

� �
; Mjþ1=2 ¼ max zn

j ; z
n
jþ1

� �
;

mjþ1=2 ¼min yn
j ; y

n
jþ1

� �
; Mjþ1=2 ¼max yn

j ; y
n
jþ1

� �
:

We suppose that 0 6 zn
j 6 1 and 0 6 yn

j 6 1 for all j 2 Z, which implies that mjþ1=2;Mjþ1=2;mjþ1=2 and Mjþ1=2 belong to the
interval [0, 1] for all j 2 Z. Moreover we make the assumption that
gðq0Þjþ1=2 > 0 and gðq1Þjþ1=2 > 0; 8j 2 Z ð14Þ
and that Dt and Dx satisfy the CFL condition (9).

3.3.1. Flux ~zjþ1=2 consistency constraint for ~zjþ1=2

As in [6,19,8] we remark that as soon as mjþ1=2 6 ~zjþ1=2 6 Mjþ1=2 then the flux ~zjþ1=2 is consistent. Therefore there is a ‘‘trust
interval” ½mjþ1=2;Mjþ1=2� for ~zjþ1=2 that ensures the consistency of the flux for the variable z in the sense that
~zjþ1=2 2 ½mjþ1=2;Mjþ1=2� ) consistency for ~zjþ1=2: ð15Þ
In the following, we shall consider ~zjþ1=2 2 ½mjþ1=2;Mjþ1=2�, for all j 2 Z.

3.3.2. Flux ~yjþ1=2 consistency constraint for ~zjþ1=2

Following similar lines as those of the previous section, we note that as soon as mjþ1=2 6 ~yjþ1=2 6Mjþ1=2 then the flux ~yjþ1=2

for the variable y is consistent. Using the definition (12), we see that mjþ1=2 6 ~yjþ1=2 is equivalent to
mjþ1=2 6

gðq1Þjþ1=2~zjþ1=2

~zjþ1=2
gðq1Þjþ1=2 þ ð1� ~zjþ1=2Þ gðq0Þjþ1=2

; ð16Þ
which also reads
~zjþ1=2f gðq1Þjþ1=2ð1�mjþ1=2Þ þ gðq0Þjþ1=2mjþ1=2gP gðq0Þjþ1=2mjþ1=2:
According to the hypotheses presented at the beginning of Section 3.3, we see that gðq1Þjþ1=2ð1�mjþ1=2Þ þ gðq0Þjþ1=2mjþ1=2 > 0
and therefore (16) is equivalent to
gðq0Þjþ1=2mjþ1=2gðq1Þjþ1=2ð1�mjþ1=2Þ þ gðq0Þjþ1=2mjþ1=2

6 ~zjþ1=2:
Using the same lines we see that an equivalent condition for ~zjþ1=2 to be such that ~yjþ1=2 6Mjþ1=2 is
~zjþ1=2 6

gðq0Þjþ1=2Mjþ1=2gðq1Þjþ1=2ð1�Mjþ1=2Þ þ gðq0Þjþ1=2Mjþ1=2

:

Then if we note
djþ1=2 ¼
gðq0Þjþ1=2mjþ1=2gðq1Þjþ1=2ð1�mjþ1=2Þ þ gðq0Þjþ1=2mjþ1=2

; ð17Þ

Djþ1=2 ¼
gðq0Þjþ1=2Mjþ1=2gðq1Þjþ1=2ð1�Mjþ1=2Þ þ gðq0Þjþ1=2Mjþ1=2

; ð18Þ
we see that ½djþ1=2;Djþ1=2� is a trust interval for ~zjþ1=2 that ensures consistency for the flux ~yjþ1=2 in the sense that
~zjþ1=2 2 ½djþ1=2;Djþ1=2� ) ~yjþ1=2 2 ½mjþ1=2;Mjþ1=2� ) consistency for ~yjþ1=2:
In the sequel, we shall consider that ~zjþ1=2 2 ½djþ1=2;Djþ1=2�, for all j 2 Z. We assume that this ansatz is compatible with
~zjþ1=2 2 ½mjþ1=2;Mjþ1=2�, however, this point will be proven in Section 3.3.5.

3.3.3. Color function stability constraint for ~zjþ1=2

In the present section we shall exhibit a condition on ~zjþ1=2 that ensures stability for the variable z in a neighbor cell of the
interface jþ 1=2 when the velocities at the interfaces of this cell have the same sign. More precisely, one considers the cell
whose z value is ‘‘emptied” by the flux ~zjþ1=2, namely the cell j (resp. cell jþ 1) when ujþ1=2 > 0 and uj�1=2 > 0 (resp. ujþ1=2 < 0
and ujþ3=2 < 0). Then we seek a sufficient condition that enforces a local maximum principle in the cell j (resp. cell jþ 1).

Suppose that ujþ1=2 > 0 and uj�1=2 > 0. In this particular flow configuration for the cell j, we have a simple sufficient sta-
bility condition for zj (see Fig. 2)
mj�1=2 6 znþ1
j 6 Mj�1=2 ) stability for z in the cell j: ð19Þ



Fig. 2. Condition for the z-stability: for the configuration ujþ1=2 > 0 and uj�1=2 > 0, the stability is ensured by mj�1=2 6 znþ1
j 6 Mj�1=2.
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We shall now seek conditions on ~zjþ1=2 that ensure znþ1
j 2 ½mj�1=2;Mj�1=2�. According to (10), a sufficient condition for

mj�1=2 6 znþ1
j is given by
mj�1=2 6 zn
j �

Dt
Dx
ð~zjþ1=2ujþ1=2 � ~zj�1=2uj�1=2Þ þ

Dt
Dx

zn
j ðujþ1=2 � uj�1=2Þ;
which also reads
Dx
Dt

mj�1=2 � zn
j

� �
� zn

j ðujþ1=2 � uj�1=2Þ � ~zj�1=2uj�1=2 6 �~zjþ1=2ujþ1=2: ð20Þ
As ~zj�1=2 is chosen within the consistency trust interval ½mj�1=2;Mj�1=2�, we have �~zjþ1=2 6 �mn
j�1=2. Consequently a sufficient

condition for (20) to be satisfied is
Dx
Dt

mj�1=2 � zn
j

� �
� zn

j ðujþ1=2 � uj�1=2Þ �mj�1=2uj�1=2 6 �~zjþ1=2ujþ1=2
and equivalently
~zjþ1=2 6 zn
j þ mj�1=2 � zn

j

� � uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
: ð21Þ
Symmetrically, we see that a sufficient condition for ~zjþ1=2 to imply znþ1
j 6 Mj�1=2 is
zn
j þ Mj�1=2 � zn

j

� � uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
6 ~zjþ1=2: ð22Þ
Finally if we note
ajþ1=2 ¼ zn
j þ Mj�1=2 � zn

j

� � uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
;

Ajþ1=2 ¼ zn
j þ ðmj�1=2 � zn

j Þ
uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
8>>><>>>:
then we see that ½ajþ1=2;Ajþ1=2� is a trust interval for ~zjþ1=2 that ensures the stability of z in the cell j when ujþ1=2 > 0 and
uj�1=2 > 0 in the sense that
~zjþ1=2 2 ½ajþ1=2;Ajþ1=2� ) znþ1
j 2 ½mj�1=2;Mj�1=2� ) stability for z in the cell j:
By applying the same lines for the case ujþ1=2 < 0 and ujþ3=2 < 0, we obtain the following proposition.

Proposition 3.1. Suppose that ~ziþ1=2 belongs to the consistency trust interval ½mi�1=2;Mi�1=2�, for all i 2 Z and that the CFL
condition (9) holds. We consider a given j 2 Z.

(a) If ujþ1=2 > 0 and ujþ3=2 > 0, we set
ajþ1=2 ¼ zn
j þ Mj�1=2 � zn

j

� � uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
;

Ajþ1=2 ¼ zn
j þ mj�1=2 � zn

j

� � uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
:

8>>><>>>:
We have the following sufficient condition for local stability:

~zjþ1=2 2 ½ajþ1=2;Ajþ1=2� ) znþ1
j 2 ½mj�1=2;Mj�1=2� ) stability for z in the cell j:
(b) If ujþ1=2 < 0 and ujþ3=2 < 0, we set
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ajþ1=2 ¼ zn
jþ1 þ Mjþ3=2 � zn

jþ1

� � ujþ3=2

ujþ1=2
þ Dx

Dt
1

ujþ1=2

� 	
;

Ajþ1=2 ¼ zn
jþ1 þ mjþ3=2 � zn

jþ1

� � ujþ3=2

ujþ1=2
þ Dx

Dt
1

ujþ1=2

� 	
:

8>>><>>>:
Then we have the following sufficient condition for local stability:

~zjþ1=2 2 ½ajþ1=2;Ajþ1=2� ) znþ1
jþ1 2 ½mjþ3=2;Mjþ3=2� ) stability for z in the cell jþ 1:
Proposition 3.1 defines a trust interval for ~zjþ1=2 that ensures local stability for z: when ujþ1=2 > 0 and uj�1=2 > 0, the sta-
bility condition deals with the value of z in the cell j, when ujþ1=2 < 0 and ujþ3=2 < 0, it deals with the value of z in the cell
jþ 1.

3.3.4. Mass fraction stability constraint for ~zjþ1=2

According to Section 3.1.4, the mass fraction flux is given by ~yjþ1=2 ¼ ~zjþ1=2
gðq1Þjþ1=2=~qjþ1=2, where ~qjþ1=2 ¼ ~zjþ1=2

gðq1Þjþ1=2þ
ð1� ~zjþ1=2Þ gðq0Þjþ1=2 and gðqkÞjþ1=2; k ¼ 0;1 are chosen using the upwind value by relation (13). We proceed following similar
lines to those in Section 3.3.3: when ujþ1=2 > 0 (resp. ujþ1=2 < 0) we consider the neighboring cell j (resp. jþ 1) whose y value
is ‘‘emptied” by the flux yjþ1=2. We consider a special flow pattern when uj�1=2 > 0 (resp. ujþ3=2 < 0) and a condition on ~zjþ1=2

that guarantees a local maximum principle for y in the cell j (resp. cell jþ 1) through the definition of ~yjþ1=2 .
We suppose that ujþ1=2 > 0 and uj�1=2 > 0 and as in Section 3.3.3 for this particular flow configuration we see that we have

the following stability condition for the value of y in the cell j
mj�1=2 6 ynþ1
j 6Mj�1=2 ) stability for y in the cell j:
We seek a sufficient condition that ensures
mj�1=2 6 ynþ1
j : ð23Þ
By multiplying (23) by qnþ1
j and using (10) we see that (23) is equivalent to
mj�1=2 qn
j �

Dt
Dx
ð~qjþ1=2ujþ1=2 � ~qj�1=2uj�1=2Þ

� �
6 qn

j yn
j �

Dt
Dx
ð~qjþ1=2~yjþ1=2ujþ1=2 � ~qj�1=2~yj�1=2uj�1=2Þ;
which also reads
~qjþ1=2~yjþ1=2 6
Dx
Dt

qn
j

ujþ1=2
yn

j �mj�1=2

� �
þ

~qj�1=2uj�1=2

ujþ1=2
ð~yj�1=2 �mj�1=2Þ þmj�1=2 ~qjþ1=2: ð24Þ
As we supposed ~zj�1=2 2 ½mj�1=2;Mj�1=2� (see Section 3.3.1), therefore ~zj�1=2 2 ½0;1� and then using the assumption (14) we
see that gqj�1=2 P 0. As we assumed the consistency constraint ~yjþ1=2 2 ½mj�1=2;Mj�1=2� to be verified (see Section 3.3.2), then

we have
~qj�1=2uj�1=2

ujþ1=2
ð~yj�1=2 �mj�1=2ÞP 0. Thus we deduce that a sufficient condition for (24) and equivalently (23) to be true is
~qjþ1=2~yjþ1=2 6
Dx
Dt

qn
j

ujþ1=2
yn

j �mj�1=2

� �
þmj�1=2 ~qjþ1=2: ð25Þ
The inequality (25) is not an explicit constraint upon ~zjþ1=2 therefore we need to investigate a little further. We use the def-
inition (12) for ~qjþ1=2~yjþ1=2 and ~qjþ1=2 in (25) and as gðqkÞjþ1=2 ¼ gðqkÞj; k ¼ 0;1 according to the upwind choice (13) we find that
(25) is equivalent to
gðq0Þjmj�1=2 þ gðq1Þjð1�mj�1=2Þ
h i

~zjþ1=2 6
Dx
Dt

qn
j

ujþ1=2
yn

j �mj�1=2

� �
þ gðq0Þjmj�1=2: ð26Þ
As mj�1=2 2 ½0;1�, we see that gðq0Þjmj�1=2 þ gðq1Þjð1�mj�1=2ÞP 0 and therefore that inequality (26) gives indeed an upper
bound for ~zjþ1=2. Moreover, we notice that this bound is explicit as it only involves terms whose definition does not rely
on ~zjþ1=2. For the sake of consistency with the formula of Proposition 3.1 we propose the following equivalent bound: let
us divide the relation (26) by ~qj then by noticing
gðqkÞ
~qj
¼
gðykÞjgðzkÞj
¼
ðykÞ

n
j

ðzkÞnj
¼
ðqkÞ

n
j

qn
j

; k ¼ 0;1
and by using the expression of qn
j =~qj given by (7) we find that (26) reads
~zjþ1=2 6 zn
j þ

qn
j mj�1=2 � yn

j

� �
ðq0Þ

n
j mj�1=2 þ ðq1Þ

n
j ð1�mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
:
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Symmetrically, a sufficient condition for ~zjþ1=2 to be such that ynþ1
j 6Mj�1=2 is provided by� �
zn
j þ

qn
j Mj�1=2 � yn

j

ðq0Þ
n
j Mj�1=2 þ ðq1Þ

n
j ð1�Mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
6 ~zjþ1=2:
Finally if we note
bjþ1=2 ¼ zn
j þ

qn
j Mj�1=2 � yn

j

� �
ðq0Þ

n
j Mj�1=2 þ ðq1Þ

n
j ð1�Mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
;

Bjþ1=2 ¼ zn
j þ

qn
j mj�1=2 � yn

j

� �
ðq0Þ

n
j mj�1=2 þ ðq1Þ

n
j ð1�mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
;

8>>>>>><>>>>>>:

we see that ½bjþ1=2; Bjþ1=2� is a ‘‘trust interval” for choosing a value of ~zjþ1=2 that ensures a local stability for y in the cell j when
ujþ1=2 > 0 and uj�1=2 > 0 in the following sense:
~zjþ1=2 2 ½bjþ1=2;Bjþ1=2� ) ynþ1
j 2 ½mj�1=2;Mj�1=2� ) stability for y in the cell j:
We can perform a similar analysis for the case ujþ1=2 < 0 and ujþ3=2 < 0 and finally we obtain the following proposition.

Proposition 3.2. Suppose that ~ziþ1=2 2 ½mi�1=2;Mi�1=2� and suppose that ~yiþ1=2 2 ½mi�1=2;Mi�1=2�, for all i 2 Z and that the CFL
condition (9) holds. Consider a given j 2 Z.

(a) If ujþ1=2 > 0 and uj�1=2 > 0 then we set
bjþ1=2 ¼ zn
j þ

qn
j Mj�1=2 � yn

j

� �
ðq0Þ

n
j Mj�1=2 þ ðq1Þ

n
j ð1�Mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
;

Bjþ1=2 ¼ zn
j þ

qn
j mj�1=2 � yn

j

� �
ðq0Þ

n
j mj�1=2 þ ðq1Þ

n
j ð1�mj�1=2Þ

uj�1=2

ujþ1=2
� Dx

Dt
1

ujþ1=2

� 	
:

8>>>>>><>>>>>>:
We have the following sufficient condition for local stability:

~zjþ1=2 2 ½bjþ1=2;Bjþ1=2� ) ynþ1
j 2 ½mj�1=2;Mj�1=2� ) stability for y in the cell j:
(b) If ujþ1=2 < 0 and ujþ3=2 < 0 then we set
bjþ1=2 ¼ zn
jþ1 þ

qn
jþ1 Mjþ3=2 � yn

jþ1

� �
ðq0Þ

n
jþ1Mjþ3=2 þ ðq1Þ

n
jþ1ð1�Mjþ3=2Þ

ujþ3=2

ujþ1=2
þ Dx

Dt
1

ujþ1=2

� 	
;

Bjþ1=2 ¼ zn
jþ1 þ

qn
jþ1 mjþ3=2 � yn

jþ1

� �
ðq0Þ

n
jþ1mjþ3=2 þ ðq1Þ

n
jþ1ð1�mjþ3=2Þ

ujþ3=2

ujþ1=2
þ Dx

Dt
1

ujþ1=2

� 	
:

8>>>>>><>>>>>>:
We have the following sufficient condition for local stability:

~zjþ1=2 2 ½bjþ1=2;Bjþ1=2� ) ynþ1
jþ1 2 ½mjþ3=2;Mjþ3=2� ) stability for y in the cell jþ 1:
3.3.5. Existence of the trust interval
In the previous sections we exhibited several ‘‘trust intervals” that, respectively, ensure consistency for the flux ~zjþ1=2 (see

Section 3.3.1), consistency for the flux ~yjþ1=2 (see Section 3.3.2), stability for the variable z (see Section 3.3.3) and stability for
the variable y (see Section 3.3.4). Let us first remark that we did not rule out the fact that some of these intervals may be
empty. Moreover, as we wish to impose all of these features we need to consider a trust interval Ijþ1=2 that intersects all
of the previously mentioned intervals, namely
Ijþ1=2 ¼ ½mjþ1=2;Mjþ1=2� \ ½djþ1=2;Djþ1=2� \ ½ajþ1=2;Ajþ1=2� \ ½bjþ1=2; Bjþ1=2�: ð27Þ
Consequently, we also need to check that Ijþ1=2–;. The answer to both questions lies in the fact that the upwind (according to
the sign of ujþ1=2) value for ~zjþ1=2 belongs to each of the previous intervals. Indeed we have the following result.

Proposition 3.3. Let j 2 Z, let us define Ijþ1=2 according to relation (27).

(a) If ujþ1=2 > 0 and uj�1=2 > 0, then zn
j 2 Ijþ1=2–;.

(b) If ujþ1=2 < 0 and ujþ3=2 < 0, then zn
jþ1 2 Ijþ1=2–;.
Proof. Let us suppose ujþ1=2 > 0 and uj�1=2 > 0. In this case we need to show that
~zj ¼ zn
j 2 ½mjþ1=2;Mjþ1=2� \ ½djþ1=2;Djþ1=2� \ ½ajþ1=2;Ajþ1=2� \ ½bjþ1=2; Bjþ1=2�:
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First we see that
mjþ1=2 ¼min zn
j ; z

n
jþ1;

� �
6 zn

j :
Then by using the consistency of the flux ~yjþ1=2, the upwind choice (13) provides in our case that
gðq1Þjþ1=2 ¼ gðq1Þj ¼ ~qj
~yj

~zj
¼ ~qj

yn
j

zn
j

and gðq0Þjþ1=2 ¼ gðq0Þj ¼ ~qj
1� ~yj

1� ~zj
¼ ~qj

1� yn
j

1� zn
j

:

According to the definition (17) we have
djþ1=2 ¼
mjþ1=2

1�yn
j

1�zn
j

ð1�mjþ1=2Þ
yn

j

zn
j
þmjþ1=2

1�yn
j

1�zn
j

:

Therefore
djþ1=2 � zn
j ¼ �

zn
j ð1� zn

j Þðyn
j �mjþ1=2Þ

ð1�mjþ1=2Þyn
j 1� zn

j

� �
þmjþ1=2 1� yn

j

� �
zn

j

:

As mjþ1=2; zn
j and yn

j belong to [0, 1] and as by definition mjþ1=2 ¼ minðyn
j ; y

n
jþ1Þ 6 yn

j , we deduce that
djþ1=2 6 zn
j :
With the definitions in Proposition 3.1
ajþ1=2 ¼ zn
j �
ðMj�1=2 � zn

j Þ
ujþ1=2

Dx
Dt

1� Dt
Dx

uj�1=2

� 	
:

As by definition Mj�1=2 ¼ max zn
j�1; z

n
j

� �
6 zn

j and as the CFL condition (9) imposes that uj�1=2
Dt
Dx 6 1, we deduce that
ajþ1=2 6 zn
j :
For the constraint of stability for the variable y, according to the definitions given in Proposition 3.2
bjþ1=2 ¼ zn
j �

qn
j

Dx
Dt

Mj�1=2�yn
j

ujþ1=2

ðq0Þ
n
j Mj�1=2 þ ðq1Þ

n
j ð1�Mj�1=2Þ

1� Dt
Dx

uj�1=2

� 	
:

We know that Mj�1=2 ¼max yn
j�1; y

n
j

� �
P yn

j and that Mj�1=2 2 ½0;1�, altogether with the positivity hypothesis (14) and the CFL
condition (9), we obtain that
bjþ1=2 6 zn
j :
Using similar lines we also obtain that zn
j 6 Mjþ1=2; zn

j 6 Djþ1=2; zn
j 6 Ajþ1=2 and zn

j 6 Bjþ1=2, which proves the point ðaÞ.
The point ðbÞ can be proven using the same arguments. h
3.4. Overall algorithm

Let us first verify that the anti-diffusive numerical scheme is conservative with respect to the variables qy;q;qu and qe.
Indeed, using the relations (7) and (10) the overall numerical scheme reads
qnþ1
j ynþ1

j � qn
j yn

j

Dt
þ 1

Dx
ð~qjþ1=2~yjþ1=2ujþ1=2 � ~qj�1=2~yj�1=2uj�1=2Þ ¼ 0;

qnþ1
j � qn

j

Dt
þ 1

Dx
ð~qjþ1=2ujþ1=2 � ~qj�1=2uj�1=2Þ ¼ 0;

qnþ1
j unþ1

j � qn
j un

j

Dt
þ 1

Dx
ð~qjþ1=2~ujþ1=2ujþ1=2 þ Pjþ1=2 � ~qj�1=2~uj�1=2uj�1=2 � Pj�1=2Þ ¼ 0;

qnþ1
j enþ1

j � qn
j en

j

Dt
þ 1

Dx
ð~qjþ1=2~ejþ1=2ujþ1=2 þ Pjþ1=2ujþ1=2 � ~qj�1=2~ej�1=2uj�1=2 � Pj�1=2uj�1=2Þ ¼ 0;

znþ1
j � zn

j

Dt
þ 1

Dx
ð~zjþ1=2ujþ1=2 � ~zj�1=2uj�1=2Þ �

1
Dx

zn
j ðujþ1=2 � uj�1=2Þ ¼ 0:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

The scheme is composed of a conservative part for qV ¼ ½qy;q;qu;qe�T and an advection-type discretization for z which
shows that our algorithm is quasi-conservative as the algorithm presented in [2,3].
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We now give a step-by-step view of the full anti-diffusive algorithm.

1. For each cell interface jþ 1=2, compute ujþ1=2; ðqcÞjþ1=2 and Pjþ1=2.
2. Compute Dt in agreement with the CFL constraint (9).
3. Compute ð~qeV;~zÞj according to (7) for all j.
4. For each cell interface jþ 1=2, compute the numerical flux ~zjþ1=2 as follows:
� if ujþ1=2 > 0
– if uj�1=2 > 0, compute the bounds of the trust interval Ijþ1=2 ¼ ½xjþ1=2;Xjþ1=2� defined by (27), then

if zn
jþ1 6 xjþ1=2; then choose ~zjþ1=2 ¼ xjþ1=2;

if xjþ1=2 < zn
jþ1 < Xjþ1=2; then choose ~zjþ1=2 ¼ zn

jþ1;

if Xjþ1=2 6 zn
jþ1; then choose ~zjþ1=2 ¼ Xjþ1=2:

8><>:
– if uj�1=2 < 0, choose the upwind value

~zjþ1=2 ¼ zn
j :
� if ujþ1=2 < 0

– if ujþ3=2 > 0, choose the upwind value

~zjþ1=2 ¼ zn
jþ1:

– if ujþ3=2 < 0, compute the bounds of the trust interval Ijþ1=2 ¼ ½xjþ1=2;Xjþ1=2� defined by (27), then

if zn
j 6 xjþ1=2; then choose ~zjþ1=2 ¼ xjþ1=2;

if xjþ1=2 < zn
j < Xjþ1=2; then choose ~zjþ1=2 ¼ zn

j ;

if Xjþ1=2 6 zn
jþ1; then choose ~zjþ1=2 ¼ Xjþ1=2:

8><>:

5. For each cell interface jþ 1=2, compute the interface values ~yjþ1=2; ~qjþ1=2; ðfqejþ1=2 and ~ujþ1=2, according to (12) and (13).

6. Update ð~qeV;~zÞj into ðqV; zÞnþ1

j using (10) for all j.
4. Evolution of constant pressure and velocity profiles

A classic issue for the simulation of compressible flows involving two-component interfaces lies in ensuring that the
numerical scheme will not develop spurious oscillations at the material interface. Indeed, although the pressure and the
velocity are Riemann invariants for the contact discontinuity associated with the material interface of the five-equation
model [2,3], when the interface is smeared by the discretization, inconsistencies may appear between the extended EOS,
the state variable ðqV; zÞ and the pressure P. This question has been examined by several authors for the past years within
the framework of various multi-component models [16,17,1,32,28,27,33,2,34,20,3,58,21,8].

For the five-equation model with isobaric closure, the Roe-type scheme [26] presented in [2,3] provides a good discret-
ization of the Riemann invariants across the material interface in the sense that it preserves some constant pressure and
velocity profiles for a wide range of EOSs. Proposition 4.1 shows that the anti-diffusive scheme is endowed with a similar
property.

Proposition 4.1. Let ðqnVn; znÞ be the approximate state variable at instant tn ¼ nDt computed with the anti-diffusive scheme.
Suppose that ðqnVn; znÞ is a contact discontinuity with uniform velocity and pressure such that for all j 2 Z we have
Pn
j ¼ P; un

j ¼ �u; ð28Þ
ðq0Þ

n
j ¼ q0; ðq1Þ

n
j ¼ q1; ð29Þ
where P; �u;q0;q1 are constants. Then, the approximate state variable ðqnþ1Vnþ1; znþ1Þ computed with the anti-diffusive scheme
verifies
Pnþ1
j ¼ P; unþ1

j ¼ �u; 8j 2 Z; ð30Þ

ðq0Þ
nþ1
j ¼ q0; ðq1Þ

nþ1
j ¼ q1; 8j 2 Z: ð31Þ
Proof. We use thereafter the same notations as in Section 3. We suppose here without loss of generality that �u > 0.
Before going any further, let us remark that as the pressure and both phasic densities are uniform at time tn, then both
phasic internal energies at time tn are also uniform. Indeed, using the pure fluid state laws ðqk; PkÞ#qkekðqk; PkÞ, one
can set
8j 2 Z; ðqkekÞnj ¼ ðqkekÞðqk; PÞ ¼ qkek:
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Let us examine the Lagrangian approximate solution obtained after the Lagrange step (7). As pressure and velocity are uni-
form, the fluxes for the Lagrange step defined by relations (8) read
ujþ1=2 ¼ �u; Pjþ1=2 ¼ P; 8j 2 Z:
After the Lagrange step defined by relations (7) and (8) we obtain for all j 2 Z
~zj ¼ zn
j ; ~yj ¼ yn

j ; ~sj ¼ sn
j ; ~uj ¼ un

j ¼ �u; ~ej ¼ en
j :
First we deduce that
gðqkÞj ¼
gðykÞj

~sj
gðzkÞj
¼
ðykÞ

n
j

sn
j ðzkÞnj

¼ ðqkÞ
n
j ¼ qk; k ¼ 0;1:
We also have ~ej ¼ en
j and thus gðqeÞj ¼ ðqeÞnj . The pressure ePj and the phasic energies gðqkekÞj ; k ¼ 0;1 associated with the up-

dated Lagrangian state ðgqjVj ;~zjÞ verify relations (2), which read here
ePj ¼ P0ðq0;
gðq0e0ÞjÞ ¼ P1ðq1;

gðq1e1ÞjÞ;gðqeÞj ¼ ðqeÞnj ¼ zn
j
gðq1e1Þj þ ð1� zn

j Þ gðq0e0Þj :

8<: ð32Þ
However, we know that the pressure Pn
j ¼ P and the phasic energies ðqkekÞnj ¼ qkek; k ¼ 0;1 associated with the state variable

ðqn
j Vn

j ; z
n
j Þ at time tn verify relations (2), namely
P ¼ P0ðq0;q0e0Þ ¼ P1ðq1;q1e1Þ;
ðqeÞnj ¼ zn

j q1e1 þ ð1� zn
j Þq0e0:

(
ð33Þ
We see then that ðePj; gðq0e0Þj ; gðq1e1ÞjÞ and ðP;q0e0;q1e1Þ are, respectively, solutions of (32) and (33), which are the same sys-
tem. According to the hypotheses of Section 2, the isobaric closure system (2) admits a unique solution. Therefore
ePj ¼ P; gðq0e0Þj ¼ q0e0; gðq1e1Þj ¼ q1e1; 8j 2 Z:
We shall now consider the Remap step (10). In our case we have
qnþ1
j � qn

j þ
Dt
Dx

�uð~qjþ1=2 � ~qj�1=2Þ ¼ 0; ð34Þ

qnþ1
j ynþ1

j � qn
j yn

j þ
Dt
Dx

�uð~qjþ1=2~yjþ1=2 � ~qj�1=2~yj�1=2Þ ¼ 0; ð35Þ

qnþ1
j unþ1

j � qn
j
�uþ Dt

Dx
�uð~qjþ1=2~ujþ1=2 � ~qj�1=2~uj�1=2Þ ¼ 0; ð36Þ

qnþ1
j enþ1

j � qn
j
~ej þ

Dt
Dx

�uð~qjþ1=2~ejþ1=2 � ~qj�1=2~ej�1=2Þ ¼ 0; ð37Þ

znþ1
j � zn

j þ
Dt
Dx

�uð~zjþ1=2 � ~zj�1=2Þ ¼ 0: ð38Þ
As we supposed �u > 0, the upwind cell relatively to the interface jþ 1=2 is the cell j. Therefore, we have for all j 2 Z
gðq1Þjþ1=2 ¼ gðq1Þj ¼ q1;
gðq2Þjþ1=2 ¼ gðq2Þj ¼ q2;gðq1e1Þjþ1=2 ¼ gðq1e1Þj ¼ q1e1; gðq2e2Þjþ1=2 ¼ gðq2e2Þj ¼ q2e2;

~ujþ1=2 ¼ ~uj ¼ �u:
Then, injecting relation (34) into (36) provides qnþ1
j ðunþ1

j � �uÞ ¼ 0. If we suppose that there is no vacuum formation in the
computational domain, namely qnþ1

j > 0 for all j 2 Z, we obtain
unþ1
j ¼ �u; 8j 2 Z:
As a consequence, all the terms related to the kinetic energy vanish in relation (37), which gives
qnþ1
j enþ1

j ¼ qn
j
~ej �

Dt
Dx

�uð~qjþ1=2~ejþ1=2 � ~qj�1=2~ej�1=2Þ ¼
X

k¼0;1

ðzkÞnj qkek �
Dt
Dx

�u
X

k¼0;1

gðzkÞjþ1=2qkek �
X

k¼0;1

gðzkÞj�1=2qkek

" #

¼
X

k¼0;1

qkek ðzkÞnj �
Dt
Dx

�u gðzkÞjþ1=2 � gðzkÞj�1=2

� �� �
:

Thanks to relation (38) we obtain
qnþ1
j enþ1

j ¼ znþ1
j q1e1 þ ð1� znþ1

j Þq0e0: ð39Þ
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By considering the mass fraction remap provided by relation (35) and the fluxes definition (12) we find that
Fig. 3.
instant

Fig. 4.
solution
znþ1
j ðq1Þ

nþ1
j � zn

j q1 þ
Dt
Dx

�uq1½~zjþ1=2 � ~zj�1=2�:
Therefore, we have znþ1
j ½ðq1Þ

nþ1
j � q1� ¼ 0, which implies that for all j 2 Z
ðq1Þ
nþ1
j ¼ q1 and similarly ðq0Þ

nþ1
j ¼ q0:
The pressure Pnþ1
j is thus solution of the system
P1 q1; ðq1e1Þnþ1
j

� �
¼ P0 q0; ðq0e0Þnþ1

j

� �
;

ðqeÞnþ1
j ¼ znþ1

j ðq1e1Þnþ1
j þ ð1� znþ1

j Þðq0e0Þnþ1
j :

8<: ð40Þ
However, thanks to relation (39) we can see that a possible solution for (40) reads
ðq1e1Þnþ1
j ¼ q1e1; ðq0e0Þnþ1

j ¼ q0e0; Pnþ1
j ¼ P1ðq1;q1e1Þ ¼ P0ðq0;q0e0Þ ¼ P:
According to the hypotheses of Section 2 regarding the isobaric closure system, we know that this solution is unique and
finally, we can conclude that Pnþ1

j ¼ P. h

Remark 5. The proof of Proposition 4.1 does not rely on the anti-diffusive feature of the numerical scheme.

In Section 5 we shall present one-dimensional and two-dimensional numerical results of pure interface advection for flu-
ids with complex or analytical EOSs that concur with Proposition 4.1.
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5. Numerical results

We present a selection of numerical tests performed with the anti-diffusive scheme and the classic upwind Lagrange–Remap
solver for the five-equation model with isobaric closure. For both schemes, the two-dimensional tests have been achieved
thanks to a simple directional splitting. In this case, we suppose that the domain is discretized over a Cartesian grid and
we note u ¼ ðu1;u2Þ the velocity of the media. We set qU ¼ ½q;qu1;qu2;qe�T ; F1ðqU; zÞ ¼ ½qu1;qu2

1 þ P;qu1u2; ðqeþ PÞu1�T

and F2ðqU; zÞ ¼ ½qu2;qu1u2;qu2
2 þ P; ðqeþ PÞu2�T . System (1) for two-dimensional problems is approximated by solving

successively
Fig. 5.
exact so

Fig. 6.
log scal
@tqUþ @x1 F1ðqU; zÞ ¼ 0;
@tzþ u1@x1 z ¼ 0;

�
then

@tqUþ @x2 F2ðqU; zÞ ¼ 0;
@tzþ u2@x2 z ¼ 0:

�

In the first step (resp. second step), the velocity component u2 (resp. u1) is passively advected and therefore the problem
boils down to the one-dimensional case with an extra advected scalar. The overall stability and consistency properties
are ensured by each directional step. The present method is limited to Cartesian meshes.

The following study is limited to the comparison of the anti-diffusive scheme against the upwind scheme for the follow-
ing reasons: first, we believe that both schemes perform in a very similar way far from the interface. Numerical tests will
help to shed some light on this matter. Second, there is a very broad range of numerical schemes and interface capture tech-
niques, like Level Set techniques [47,30,31,9,46,45], Front Tracking [10,4,15,59], or VOF [14,18,29] methods, that would be
worth comparing to the anti-diffusive scheme. Achieving such an exhaustive comparison would be very lengthy and is be-
yond the scope of the present work. Nevertheless we shall see in Section 5.7 that results obtained with the anti-diffusive
scheme shows a strong agreement with both experimental results and previous works.
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5.1. One-dimensional advection test

We consider a one-dimensional interface advection between two materials: the first fluid (denoted by fluid 0) is governed
by a tabulated EOS and the second fluid (denoted by fluid 1) is a stiffened gas. For the sake of simplicity and ease of repro-
ducibility we tabulated the following van der Waals gas:
Fig. 7.
upwind
diffused
P ¼ c0 � 1
1� b0q

� 	
ðqeþ a0q2Þ � a0q2; c0 ¼ 1:4; b0 ¼ 10�3; a0 ¼ 5:
The table data were obtained by discretizing the region of the ðq; PÞ-plane delimited by 0 6 q 6 990 and 104
6 P 6 109 over

a uniform grid of 1000� 1000 nodes. The table gives the values of qe for each node ðq; PÞ and the function ðq; PÞ#qe is
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provided thanks to a Q1 interpolation. For the tabulated gas, the function ðq; eÞ#P is defined implicitly and evaluated by
means of a Newton method.

The fluid 1 is a stiffened gas whose EOS is given by the following analytical relation:
Fig. 8.
test obt
P ¼ ðc1 � 1Þqe� c1p1; c1 ¼ 4:4; p1 ¼ 6� 108 Pa ð41Þ
The pressure of the five-equation model with isobaric closure is then retrieved by solving the equation P0 ¼ P1 with respect
to the variable q1e1 thanks to a dichotomy algorithm.

We consider a 1 m long one-dimensional domain with periodic boundary conditions. The initial condition depicts a one-
dimensional fluid 1 bubble surrounded by fluid 0, namely
ðq; u; PÞ ¼ ð50 kg m�3;103 m s�1;105 PaÞ; for x 2 ½0;0:3Þ [ ð0:7;1�; at t ¼ 0 ðfluid 0Þ;
ðq; u; PÞ ¼ ð103 kg m�3;103 m s�1;105 PaÞ; for x 2 ½0:3;0:7�; at t ¼ 0 ðfluid 1Þ:
The domain is discretized over a 100-cell mesh and we impose C CFL ¼ 0:99.
The color function profile obtained with the anti-diffusive solver remains very sharp throughout the computation (see

Fig. 3). Indeed, at t ¼ 3:0 s after 1524000 time steps, the initial pulse shape of the variable is preserved by the anti-diffusive
scheme: only two cells are affected by numerical diffusion. Moreover, the position of the approximated pulse shows a very
strong match with the exact solution.

Fig. 4 shows that the constant pressure and velocity profiles are preserved by the anti-diffusive scheme. This illustrates
the ability of the solver to provide a good treatment of the iso-pressure and iso-velocity solutions, even in the case of com-
plex and non-analytic EOSs.

One can notice in Fig. 5 that the density variable q and the mass fraction variable y both inherit the anti-diffusive property
built for the variable z. Indeed, at t ¼ 3:0 s, the pulse shape of both density and mass fraction is captured with no more than 2
cells of numerical diffusion.

The evolution of the numerical diffusion for the color function variable z throughout the computation is given in Fig. 6
thanks to the graph of the function N# percentðNÞ, where N is the number of time steps and percentðNÞ is the percent
of cells where the variable z is numerically diffused. At an instant tn, a cell i is counted as a cell with diffused value of z if
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m < zn
i < 1� m; m ¼ 10�6. This graph shows that the number of diffusion cells reaches the asymptotic value of 2% (2 diffusion

cells) straight after the first time step with the anti-diffusive solver.
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Fig. 10. One-dimensional impact problem. Profiles of the density, the pressure, the velocity, the mass fraction and the color function obtained with the
upwind scheme, the anti-diffusive scheme and the exact solution, at t ¼ 85 ls.

Table 1
Convergence rate estimates obtained with both upwind and anti-diffusive schemes, for the shock tube test of Section 5.2 at instant t ¼ 0:14 s. The rates are
computed thanks to a linear regression performed on the function lnðDxÞ# lnðEDx ½q�ðt ¼ 0:14ÞÞ; q 2 fq; P; u; z; yg.

Variable Convergence rate for the upwind scheme Convergence rate for the anti-diffusive scheme

Pressure 0.819 0.830
Velocity 0.824 0.835
Density 0.656 0.833
Mass fraction y 0.478 1.042
Color function z 0.525 1.038
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5.2. Shock tube test

We now test the anti-diffusive with a shock tube simulation that is derived from the classical test elaborated by Sod [53].
The test involves two perfect gases whose EOSs read
V
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Fig. 11
functio
Pk ¼ ðck � 1Þqkek; k ¼ 0;1: ð42Þ
At t ¼ 0 both fluids are at rest in a 1 m long one-dimensional domain, separated by an interface located at x ¼ 0:5 m. On
each side of the interface, the initial fluid state is
ðc;q;u; PÞ ¼ ð1:4;1:0 kg m�3;0:0;1:0 PaÞ; for 0 6 x < 0:5;

ðc;q;u; PÞ ¼ ð2:4; 0:125 kg m�3;0:0;0:1 PaÞ; for 0:5 6 x 6 1:
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. Shock tube problem with the Cochran-Chan and the JWL gas. Profiles of the density, the pressure, the velocity, the mass fraction and the color
n obtained with the upwind scheme, the anti-diffusive scheme and the exact solution, at t ¼ 73 ls.



Fig. 12. Two-dimensional advection test. Profile of the color function at t ¼ 0 s.
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The domain is discretized over a 300-cell mesh and both boundary conditions are computed by maintaining constant states.
Fig. 7 displays the results of the simulation at t ¼ 0:14 s. For both pressure and density there is a good agreement between
the anti-diffusive and the upwind solver. One can see that the interface is captured with at most two diffusion cells by the
anti-diffusive solver for all the variables that experience a jump at the material interface, namely: the color function z, the
mass fraction y and the density q. Far from the interface, the density profiles computed by both schemes coincide.

The above observations suggest that the anti-diffusive mechanism of the anti-diffusive scheme is only triggered at the
contact discontinuity. For the shock and the rarefaction waves, the anti-diffusive scheme simply degenerates to the upwind
scheme. This explains the similarities between both results. This statement is also consistent with the strong match between
the pressure and the velocity computed by both schemes as these variables are not sensitive to the strength of the contact
discontinuity. This phenomenon will be illustrated in the next tests.

We notice a slight undershoot at the contact discontinuity for the density. Fig. 8 displays the result obtained for the same
test with a 50000-cell grid: as we refine the mesh, this flaw vanishes and all variables converge to the exact solution.
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Fig. 14. Two-dimensional advection test. Percent of cells in the domain where the color function z is numerically diffused versus the number of time steps,
for the upwind the and the anti-diffusive scheme.

Fig. 15. Two-dimensional advection test. Iso-contours q ¼ f0:05; 0:08;0:5;0:1;1:0;5:0;7:0;8:0;9:0g for the density q and isocontours
y ¼ f0:1;0:2;0:3; 0:4; 0:5;0:6;0:7; 0:8g for the mass fraction y obtained with the anti-diffusive scheme at instant t ¼ 7:0 s.

Fig. 16. Air-R22 shock/cylinder interaction test. Description of the initial conditions.
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The evolution of the numerical diffusion is displayed in Fig. 7 and is quite coherent with the results of Section 5.1. After
the very first time steps, the shock departs from the interface, which becomes driven by the advection at the local velocity.
Then, the percentage of diffusion cells reaches instantaneously an asymptotic value of 0.33%, i.e. one diffusion cell.

5.3. Convergence test

The shock tube test of Section 5.2 is now used to investigate the convergence rate of the anti-diffusive scheme. We obtain
a converge rate estimate of the scheme by computing the relative error of the approximate solution in L1ð0;1Þ norm for dif-
ferent space steps. Let q be a computed variable, we note qexact the exact solution and qDx the approximate solution computed
on a Dx space step mesh. The L1ð0;1Þ relative error EDx½q� for the variable q and the space step Dx is defined by
t#EDx½q�ðtÞ ¼ kq exactð�; tÞ � qDxð�; tÞkL1ð0;1Þ=kq exactð�; tÞkL1ð0;1Þ. Fig. 9 displays the relative error in log scale of the variables
q; u; P; y and z at instant t ¼ 0:14 s for the range of space steps Dx�1 2 f300;500;103;5� 103;8:5� 103;104;15� 103;
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Fig. 17. Air-R22 cylinder/bubble interaction test. Percent of cells in the domain where the color function z is numerically diffused versus the number of time
steps for both upwind and anti-diffusive scheme.
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Table 2
Air-R22 shock/cylinder interaction test. EOSs coefficients and initial data.

Location Density ðkg m�3Þ Pressure (Pa) u1 ðm s�1Þ u2 ðm s�1Þ c

Air (post-shock) 1.686 1:59� 105 �113.5 0 1.4

Air (pre-shock) 1.225 1:01325� 105 0 0 1.4

R22 3.863 1:01325� 105 0 0 1.249
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20� 103;30� 103;50� 103g. We computed the value of the convergence rates by performing a simple linear regression.
Results are gathered in Table 1. For the pressure and velocity variables that are ‘‘blind” to the contact discontinuity wave
strength the convergence rates are quite similar with both schemes. However, the error for the variables y and z is reduced
by more than one decade for small values of Dx and we obtain convergence rates which are close to 1.0. This convergence
improvement is visible with the density variable that is sensitive to every waves of the system for small values of Dx.
Fig. 19. Air-R22 shock/cylinder interaction test. Mapping of the color function z for both upwind and anti-diffusive solvers. The initial position of the
cylinder is represented by a solid black line. The instant t ¼ 0 is chosen to coincide with the time when the shock hits the cylinder.
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5.4. One-dimensional impact problem between two Mie-Grüneisen materials

We consider a Riemann problem examined by Refs. [27,34,3] that aims at simulating the impact of a copper plate onto an
inert solid. We suppose that both components are governed by a Mie-Grüneisen-type EOS:
Fig. 20
represe
color in
Pðq; eÞ ¼ CðqÞqðe� e refðqÞÞ þ PrefðqÞ: ð43Þ
. Air-R22 shock/cylinder interaction test. Schlieren diagram for both upwind and anti-diffusive solvers. The initial position of the cylinder is
nted by a solid red line. The instant t ¼ 0 is chosen to coincide with the time when the shock hits the cylinder. (For interpretation of the references to
this figure legend, the reader is referred to the web version of this article.)
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Each material is supposed to verify the Cochran-Chan law, which provides the following form for the functions C; eref and Pref :
Fig. 21
represe
color in
erefðqÞ ¼
X
r¼1;2

ð�1ÞrAr

ð1� ErÞqref

q ref

q

� 	1�Er

� 1

" #
� eref ; PrefðqÞ ¼

X
r¼1;2

ð�1Þkþ1
Ar

qref

q

� 	�Er

; CðqÞ ¼ Cref :
. Air-R22 shock/cylinder interaction test. Schlieren diagram for both upwind and anti-diffusive solvers. The initial position of the cylinder is
nted by a solid red line. The instant t ¼ 0 is chosen to coincide with the time when the shock hits the cylinder. (For interpretation of the references to
this figure legend, the reader is referred to the web version of this article.)
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In our case, we have
Table 3
Compar
experim
final up

Velo

Expe
Quir
Shyu
Shyu
Upw
Anti
ðCref ;qref ; eref ;A1;A2;E1;E2Þcopper ¼ ð2:0;8900:0;117900:0;1:45667� 1011;1:47751� 1011;2:994;1:994Þ;

ðCref ;qref ; eref ;A1;A2;E1;E2Þsolid ¼ ð0:93;1840:0;326100:0;1:2871� 1010;1:34253� 1010;4:1;3:1Þ:
The solution of this problem is composed by a leftward-travelling shock wave, a contact discontinuity and a rightward-trav-
elling shock wave. The computational domain is a 1 m long domain. At t ¼ 0 the copper lies in the region 0 6 x 6 0:5 with a
velocity u ¼ 1500 m: s�1 and a density q ¼ 8900 kg m�3, while the inert solid is at rest in the region 0:5 < x 6 1, with a den-
sity q ¼ 1840 kg m�3. The pressure is initially P ¼ 105 Pa in the whole domain.

Fig. 10 displays the simulation results obtained at t ¼ 85 ls with a 300-cell grid. Far from the interface the approximate
solution obtained with both anti-diffusive scheme and upwind scheme are quite similar. The anti-diffusive solver succeeds
ison of the computed wave velocities obtained thanks to both upwind and anti-diffusive with the numerical results presented in [25,35] and the
ental results of [13]. The velocities of the incident shock wave, the refracted shock wave, the transmitted shock wave, the initial upstream position, the
stream position, the initial downstream position and the final downstream position are denoted, respectively, by Vs;VR;VT ;Vui;Vuf ;Vdi;Vdf .

city (m/s) Vs VR VT Vui Vuf Vdi Vdf

riment [13] 415 240 540 73 90 78 78
k and Karni [25] 420 254 560 74 90 116 82
e [35] (tracking) 411 243 538 64 87 82 60
e [35] (capturing) 411 244 534 65 86 98 76
ind solver 411 243 524 66 86 83 62
-diffusive solver 411 243 525 65 86 85 64

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100  200  300

Pr
es

su
re

 (
ba

r)

t (µs)

Pressure History at x1=197 mm / station=3 mm

upwind solver
anti-diffusive

 1

 1.5

 2

 2.5

 3

 200  300  400

Pr
es

su
re

 (
ba

r)

t (µs)

Pressure History at x1=189 mm / station=11 mm

upwind solver
anti-diffusive  1 1.2 1.4 1.6 1.8 2 2.2 2.4 200 300 400Pressure (bar)t (µs)Pressure History at x1=1739mm / station=27 mmupwind solveranti-diffusive 1 1.2 1.4 1.6 1.8 2 300 400



in controlling the numerical diffusion of the interface with a single diffusion cell while the upwind scheme captures the
interface in a 56-cell region. The variables q and y which are sensitive to the contact discontinuity also approximate the
interface with a single cell. Moreover, no spurious oscillations appear at the interface for the pressure or the velocity.

5.5. Shock tube problem with two Mie-Grüneisen materials

We now turn to another Riemann problem involving two Mie-Grüneisen components. This test has been presented in
[27,34] and it involves the same Cochran-Chan material modelling copper that was used in Section 5.4 with a Jones–Wil-
kins–Lee (JWL) material modelling a gaseous explosive. The EOS for the JWL gas reads
Table 4
Liquid–

Loca

Liqu

Liqu

Air
CðqÞ ¼ Cref ; erefðqÞ ¼
X
r¼1;2

Ar

Rrqref exp �Rr
qref

q

� �
� eref ; PrefðqÞ ¼

X
r¼1;2

Ar exp �Rr
qref

q

� �
;

where we have
Cref ¼ 0:25; A1 ¼ 854:5� 109; A2 ¼ 20:5� 109; R1 ¼ 4:6; R2 ¼ 1:35; qref ¼ 1840; eref ¼ 8149:158� 103:
The domain is 1 m long and at t ¼ 0, the interface is located at x ¼ 0:5 m. The explosive is initially on the left side of the inter-
face while the copper is on the right side. The state variables are set as follows:
ðq;u; PÞ ¼ ð2485:37 kg m�3; 0:0;3:7� 1010 PaÞ; for 0 6 x 6 0:5 at t ¼ 0;

ðq;u; PÞ ¼ ð8900 kg m�3;0:0;105 PaÞ; for 0:5 < x 6 1 at t ¼ 0:
The computational domain is discretized with 300 cells and the results obtained at t ¼ 73 ls are displayed in Fig. 11. The
solution is composed of a leftward-going rarefaction, a contact discontinuity and a rightward-going shock wave. The results
of the upwind scheme and the anti-diffusive scheme coincide for the rarefaction and the shock. In both case, no oscillations
occur at the interface. The interface is discretized with a single diffusion cell at t ¼ 73 ls, while it is spread over 37 cells with
the upwind scheme. The anti-diffusion mechanism also works for the variables y and q as in the previous tests.

5.6. Two-dimensional advection test

The present simulation aims at testing the ability of the anti-diffusive scheme to deal with pure interface advection in a
two-dimensional case. We consider a 1 m� 1 m square domain that contains two perfect gases whose EOS verify relation
(42). Initially both gases are separated by a star shaped interface (see Fig. 12) as follows: let us define
A ¼A1 [A2; with
A1 ¼ ðx1; x2Þ 2 ½0;1�2 such that 1

3� x1 � 1
2



 

 < x2 <
2
3� 4 x1 � 1

2



 

n o
;

A2 ¼ ðx1; x2Þ 2 ½0;1�2 such that 1
3� x1 � 1

2



 

 < x2 <
1
2

n o
8><>:
gas shock/bubble interaction test. EOS coefficients and initial data.

tion Density ðkg m�3Þ Pressure (Pa) u1 ðm s�1Þ u2 ðm s�1Þ c p (Pa)

id (post-shock) 1030.9 3� 109 300.0 0.0 4.4 6:8� 108

id (pre-shock) 1000.0 105 0.0 0.0 4.4 6:8� 108

1.0 105 0.0 0.0 1.4 0.0
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at t ¼ 0 we set
ðc;q;u1;u2; PÞ ¼ 4:4;10:0 kg m�3;
ffiffiffi
2
p

=2 m s�1;
ffiffiffi
3
p

=2 m s�1;1 Pa
� �

; for x 2A;

ðc;q;u1;u2; PÞ ¼ 1:4;0:01 kg m�3;
ffiffiffi
2
p

=2 m s�1;
ffiffiffi
3
p

=2 m s�1;1 Pa
� �

; for x R A:
The computations are performed on a 100� 100 mesh with periodic boundary conditions. The mesh was purposely chosen
so as to check how the scheme manages sharp interfaces on a coarse grid.

The uniform pressure and velocity fields induce a translation motion of the interface across the domain. Fig. 13 shows iso-
contours of the color function z obtained with both solvers. The anti-diffusive scheme succeeds quite well in preserving both
the sharpness and the overall shape of the interface despite the low resolution of the grid. The evolution of the number of
diffusion cells is displayed in Fig. 14. After 10000 time steps, the percentage of diffused cells is only 3.75% for the anti-dif-
fusive scheme.
Fig. 24. Liquid–gas shock/bubble interaction test. Mapping of the color function z for both upwind and anti-diffusive solvers.



The velocity and pressure profiles are preserved by the anti-diffusive scheme as in the previous one-dimensional tests: at
t ¼ 7:0 s, the relative error in norm L1 is about 3:6� 10�9 for the pressure and 1:5� 10�9 for the velocity. We observe that
the anti-diffusive feature of the scheme also works for both density q and mass fraction y as shown in Fig. 15 although their
profile is altered by the low resolution of the mesh.
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Fig. 25. Liquid–gas shock/bubble interaction test. Profile of both pressure and density along the x2 ¼ 0:5 m axis with both upwind and anti-diffusive solvers
at instants ðt1; t2Þ ¼ ð375;450Þ ls.
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5.7. Air-R22 shock/cylinder interaction test

We now present a two-dimensional test that consists in simulating the impact of a Mach 1.22 shock travelling through air
onto a cylinder of R22 gas. This test aims at simulating the experiment of [13] and has been considered by several authors
such as [25,35]. Similar simulations are available in [1,28,9,33,3,37,49,12]. The initial conditions are depicted in Fig. 16: a
cylinder of R22 is surrounded by air within a L1 � L2 rectangular domain. At t ¼ 0, the cylinder is at rest and with its center
located at ðX1;X2Þ. We denote by r the initial radius of the cylinder. The planar shock is initially located at x1 ¼ Ls and moves
from right to left towards the cylinder. The parameters for this test are
Table 5
Underw

Fluid

Air a

Gas

Wat

Fig. 27.
and the
L1 ¼ 445 mm; L2 ¼ 89 mm; Ls ¼ 275 mm; X1 ¼ 225 mm; X2 ¼ 44:5 mm; r ¼ 25 mm:
Both R22 and air are modelled by two perfect gases whose coefficients c and initial states are given in Table 2. The domain is
discretized with a 5000� 1000 regular mesh. Top and bottom boundary conditions are set to solid walls while we use con-
stant state boundary conditions for the left and right boundaries.

The shock reaches the R22 bulk after approximately 60 ls, in the following we shall consider this instant as the instant
t ¼ 0. Fig. 19 displays the evolution cylinder shape obtained with both the anti-diffusive and the upwind solver. The profiles
are obtained thanks to a mapping of the color function values and do not involve any interface reconstruction post-treatment
or iso-contours computation. The overall location of the bulk is quite similar for both schemes. The shape of the vortex pair is
numerically diffused into regular rounded shapes for the upwind scheme. The anti-diffusive solver succeeds in confining the
interface within a very thin layer of cells and provides a different vortex pair shape with fine irregular structures that agrees
with the simulations of [35] and the experimental results [13]. The percent of cells containing a numerically diffused value of
z is displayed in Fig. 17: after 6800 time steps, the diffusion percent is 10% with the upwind scheme, while it is only 0.5% with
the anti-diffusive solver. The continuous growth of the interface diffusion with the anti-diffusive scheme can be explained by
the stretching of the interface during the motion. The perimeter of the bulk increases, this implies that the number of sur-
rounding diffusion cells increases as well.
ater explosion test. Initial conditions and EOSs parameters.

Density ðkg m�3Þ Pressure (Pa) c p (Pa)

bove the water surface 1.225 1:011325� 105 1.4 0.0

inside the bubble 1250.0 109 1.4 0.0

er 1000.0 1:011325� 105 4.4 6:8� 108

Underwater explosion test. Profiles at the instants ðt1; t2; t3; t4Þ ¼ ð0:2; 0:4; 0:8;1:2Þms, of the Schlieren diagram for the density (mapping of jrqj)
pressure (mapping of jrPj) with both upwind solver and anti-diffusive solvers.



 1 2
The present test provides rich wave patterns and waves interactions that has been thoroughly analyzed in several previ-
ous work (see for example [13,41,40,25] and also [49,12]). Figs. 20 and 21 display Schlieren diagrams obtained with both
solvers and allow to observe the evolution several waves. As in [13,25,35] we shall consider the following waves: the inci-
dent shock wave (marked with a ‘‘�” symbol), the upstream interface position (marked with a ‘‘+” symbol), the downstream
interface position (marked with a ‘‘}” symbol), which are, respectively, the right-most and the left-most location of the inter-
face at the symmetry axis x2 ¼ 44:5 mm. We also consider the refracted shock wave (marked with a ‘‘M” symbol) and the
transmitted shock waves (marked with a ‘‘N” and a ‘‘*” symbol). The evolution of the fronts position are recorded in
space-time diagrams in Fig. 18 which strongly agree with the experimental results [13] and the simulations of [35]. Follow-
ing as [25,35] we performed a linear least square fit of each set point in order to evaluate the propagation velocity of each
Fig. 28. Underwater explosion test. Comparison of the density profiles at t ¼ 1:2 ms, between the upwind solver (left) and anti-diffusive solver (right).
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wave. The results are summarized in Table 3 along with the previous simulation results of [25,35] and the experimental re-
sults of [13]. The velocity Vs of the incident shock wave is computed for t 2 ½0;250� ls, the velocity VR of the refracted shock
wave is measured for t 2 ½0;200� ls. The initial and final upstream positions and are measure for, respectively, t 2 ½0;400� ls
and t 2 ½400;1000� ls. The initial and final downstream positions and are measure for, respectively, t 2 ½200;400� ls and
t 2 ½400;1000� ls. The velocity of the transmitted 	-wave is evaluated for t 2 ½200;259� ls. Table 3 shows that a good agree-
ment is found with both the simulations performed in [35] and the experimental results of [13].

Finally, we provide a record of the pressure values at different stations throughout the simulation. Following [25,35] we
used the stations located at the distance {3,11,27,43,67,99} mm downstream the gas cylinder along the symmetry axis which
corresponds to the points Mp 2 fðx1; x2Þ j x1 ¼ 197;189;173;157;133;101 mm; x2 ¼ 44:5 mmg. The results are displayed in
Fig. 22. One can observe a good agreement between our results and the results computed in [25,35].

5.8. Liquid–gas shock/bubble interaction test

We perform another shock/interface interaction test proposed in [28] that involves a gas bubble surrounded by a liquid.
The geometry of the initial condition is depicted in Fig. 23 with the following parameters value:
Fig. 30.
t 2 f2:0
L1 ¼ 2 m; L2 ¼ 1 m; Ls ¼ 0:04 m; X1 ¼ 0:5 m; X2 ¼ 0:5 m; r ¼ 0:4 m:
The gas within the bubble is governed by a perfect gas law while the liquid is modelled with the stiffened gas law (41). The
EOS parameters for each material and the fluid state at t ¼ 0 are provided in Table 4.
Kelvin–Helmholtz instability test. Mapping of the color function values obtained with the anti-diffusive scheme and the upwind scheme at instants
;4:0g s.



2806 S. Kokh, F. Lagoutière / Journal of Computational Physics 229 (2010) 2773–2809
The computational domain is discretized with a 600� 300 grid and we use solid wall boundary conditions for the top and
bottom boundaries while we impose constant states at the left and right boundaries. Figs. 24 and 26 display the mapping of,
respectively, the color function and the density at several instants. One can clearly see the important variation of the inter-
face topology and more specifically the creation of two symmetrical vortices on each side of the axis x2 ¼ 0:5 m as in [28].
The anti-diffusive feature of the scheme provides sharp profiles for the color function, the mass fraction and the density. At
t ¼ 75 ls, the number of diffusion cells for the anti-diffusive scheme is 2.74% while it is 19.31% for the upwind scheme. Pro-
files of cuts along the axis x2 ¼ 0:5 ms for the density and the pressure show a good agreement between both scheme far
from the interface (see Figs. 25 and 26). The contact discontinuity that appears in the density variable is very sharp. However,
one can note that when the waves start interacting with the diffused interface zone for the upwind scheme this induces dif-
ferences in the density profiles.

5.9. Underwater explosion test

We consider a test presented in [35] for a model of underwater explosion. The phenomena involved in this test have been
studied in [41]. The computational domain is the rectangular domain ½�2;2�m� ½�1:5;1�m. At t ¼ 0, the horizontal water
surface that separates air and water is located at x2 ¼ 0 and below this line, a bulk of compressed gas lies surrounded by
water. This gas bulk has a circular shape with the center ðx1; x2Þ ¼ ð0;�3 mÞ and a radius r0 ¼ 0:12 m. The liquid in the do-
main is governed by the stiffened gas law (41) and both air above the water surface and gas inside the bulk are modelled
with the same perfect gas law. At t ¼ 0, the fluids are at rest in the whole domain. The initial state variables and the EOS
Fig. 31. Kelvin–Helmholtz instability test. Mapping of the color function values obtained with the anti-diffusive scheme and the upwind scheme at instants
t 2 f5:0;8:0g s.
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parameters are provided in Table 5. Gravity effects are neglected and the left, right and bottom boundaries are solid walls,
while we impose a transparent boundary condition for the top domain boundary. The domain is discretized with a 400� 250
grid. We display the profiles of the Schlieren diagram for the density and the pressure at the instants
t 2 f0:2;0:4;0:8;1:2gms in Fig. 27. Two circular pressure waves depart from the interface: a shock wave travelling in the
water and a rarefaction wave travelling in the gas bulk. As expected (see [41,35]), the gas bulk first starts expanding sym-
metrically, then as soon as the shock hits the air–water separation, a wave diffraction phenomenon occurs and the shape of
the gas bubble evolves into an oval shape. The comparison between the upwind solver and the anti-diffusive solver shows a
good agreement (see Fig. 29). The anti-diffusion effect of the solver is clear for the variable y; z and q as seen in Figs. 28 and
29. At t ¼ 1:2 ms, the number of diffusion cells of the interface for the upwind solver is 15.62% while it is only 0.51% for the
anti-diffusive solver.
5.10. Kelvin–Helmholtz instability

We consider the simulation of a Kelvin–Helmholtz instability. The computational domain is a 1 m� 1 m square contain-
ing two perfect gases separated by an interface C. We define C as a perturbation of the line x2 ¼ 0:5 m in the region x1 2 ½a; b�,
where 0 < a < b < 1. The perturbation is defined by the iso-contour f ðx1; x2Þ ¼ 0, where the function f reads
Fig. 32.
steps, fo
functio
f ðx1; x2Þ ¼
x2 þ K sin p x1�a

b�a

� �h i
; if x1 2 ½a; b�;

x2 � 1=2; if x1 R ½a; b�
:

(

For our test, we chose the parameters ða; b;KÞ ¼ ð0:65 m;0:85 m;0:03 mÞ. At t ¼ 0, the flow configuration is given by
ðc;q; P; u1; u2Þ ¼ ð1:40;1:0 kg m�3;0:71 Pa;þ 0:25 m s�1;0:0Þ; if f ðx1; x2Þ > 0;

ðc;q; P; u1; u2Þ ¼ ð1:67;1:0 kg m�3;0:71 Pa;� 0:25 m s�1;0:0Þ; if f ðx1; x2Þ 6 0:
The discretization is performed with a 1000� 1000 grid. We set periodic boundary conditions for the left and right bound-
aries. Both top and bottom boundaries are solid walls. This test is meant to challenge the ability of the anti-diffusive scheme
to deal with very complex variations of the interface geometry while keeping control of the numerical diffusion for the var-
iable z.

Figs. 30 and 31 provide a mapping of the color function values for both anti-diffusive and upwind schemes at several in-
stants. One can see that the overall aspect of the instability is similar with both schemes. However, in regions where the up-
wind scheme generates 0 < z < 1 numerical values for the color function, the anti-diffusive scheme creates very fine
interface structures that are not destroyed by the numerical diffusion. Moreover, when numerical diffusion seems to extend
within the central vortex for the anti-diffusive scheme, it seems to decrease again after few time steps. Let us emphasize that
we do not claim that the filaments appearing in the anti-diffusive results are more physically relevant than the shapes ob-
tained with the upwind scheme. Neither do we suggest that the solution has a better resolution — in the sense of a more
converged solution — with the anti-diffusive scheme. Indeed, there is no reason to suppose that the velocity field computed
by the anti-diffusive scheme is a better resolved velocity field and describes finer vortices than the velocity field computed
with the upwind scheme.

As in the previous tests, we see that the anti-diffusive solver succeeds in controlling the diffusion of the color function z
(see Fig. 32). After about 11000 time steps the percent of cells with numerically diffused value of z in the domain is 7.54% for
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the anti-diffusive scheme versus 59.71% for the upwind scheme. As in Section 5.7 the continuous growth of the numerical
diffusion is caused by the stretching and break-ups of the interface keeps. The interface length increases as the instability
grows and creates therefore more diffusion cells.

We observe a trend of the anti-diffusive scheme towards producing ‘‘stairstep” profiles for the interface. The same type of
numerical artefacts was observed in [57,56] with the Hyper-C scheme of [44]. This common flaw of both the Hyper-C scheme
and the limited downwind scheme of [6] is very critical when the schemes are used for advecting the profile of smooth func-
tions (see [44,7]). In our case we only deal with sharp characteristic functions whose profile are preserved by the numerical
scheme. Moreover, the stairstep profile of the interface does not seems to trigger new instabilities that would dramatically
alter the growth of the main instability when compared to the upwind results. Indeed, for the sake of comparison, we plotted
the evolution of the kinetic energy in the direction, that is perpendicular to the shear in Fig. 32. This figure displays the graph
of the function t#

R
½0;1�2

1
2 qu2

2ðx1; x2; tÞdx1dx2, which provides a comparison element between the growth rates of the insta-
bility computed by both schemes. The match between both approximate solutions is very strong, even for large value of t, far
from the linear growth regime.

6. Conclusion

We presented a Lagrange–Remap solver for the five-equation model with isobaric closure examined in [2,3]. This solver
was designed following lines similar to [19,7,8]. This method allows to contain the numerical diffusion affecting the color
function z that defines the location of the interface between both fluids. Our algorithm does not involve any interface recon-
struction process and does not generate extra CPU costs compared to the classical Lagrange–Remap upwind solver. This
numerical method does not rely on the analytical form of the EOSs and allows a straightforward use of complex EOSs.
The numerical solver is conservative with respect to the mass, momentum, total energy, and partial masses. The numerical
fluxes implemented within this scheme are consistent by construction. Under a classical CFL condition, the solver is en-
dowed with stability properties for the color function z and the mass fraction y that are similar to the stability properties
of the upwind scheme. In particular, we proved positivity properties regarding both mass fraction and color function. We
proved that the numerical scheme preserves constant pressure and velocity profiles similar to those examined in [2,3].

We performed one-dimensional and two-dimensional numerical tests that showed that the discretization of the interface
is resolved within a very few transition cells. We verified throughout the tests that the anti-diffusive mechanism is also ac-
tive for other variables experiencing a jump across the interface like the mass fraction and the density. Far from the interface,
the anti-diffusive solver degenerates to the classical Lagrange–Remap upwind. A convergence test was performed on a shock
tube test that indicates that the convergence rate of the anti-diffusive solver is at most order 1. Numerical tests involving
tabulated EOSs were also achieved. By means of a simple dimensional splitting, we performed two-dimensional tests that
concur with the one-dimensional results. Indeed, we observed a good control of the numerical diffusion in the vicinity of
the interface and a strong agreement with the upwind solver far from the interface.

The anti-diffusive solver has already been successfully implemented in a three-dimensional parallelized code that is in
the process of validation. An extension of the numerical method involving higher order methods is in progress.
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